Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(1): 116-127, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109355

RESUMO

Since eggs are laid directly on fruit skin, it is typically believed that food odor has little impact on the foraging of Grapholita molesta larvae. It is crucial to note that larvae that hatch on twigs and leaves could need some sort of identification system when foraging. Here, 22 GmolOBP genes were identified from the G. molesta larval transcriptome via the comparison of conserved domain and homology in the protein level. GmolOBP1 had strong affinities for important pear-fruit volatiles, which caused larvae strong behavioral responses. However, after GmolOBP1 silencing, the larvae lost their attraction to methyl salicylate, α-farnesene, butyl acetate, ethyl butanoate, and ethyl hexanoate, and the effects of larvae seeking various pears were significantly reduced. Consequently, GmolOBP1 was required for the reception of pear volatiles and was involved in mediating how G. molesta larvae foraged. Our research revealed the GmolOBP1 foraging signal recognition mechanism as well as potential molecular targets for field pest management.


Assuntos
Mariposas , Pyrus , Receptores Odorantes , Animais , Larva/genética , Larva/metabolismo , Receptores Odorantes/metabolismo , Frutas/genética , Frutas/metabolismo , Pyrus/genética , Pyrus/metabolismo
2.
Insects ; 14(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233096

RESUMO

Sexual generation is an important generation in the life cycle of host-alternating aphids, and its population size determines the intensity of the peak in the next spring. Although male trapping techniques based on olfactory stimuli have been successfully established in the field, the biological basis of olfactory perception in males is unclear. In this study, we compared the morphology of antennae and the types, sizes, numbers, and distribution of sensilla between males and sexual females in the host-alternating aphid Semiaphis heraclei (Hemiptera: Aphididae). We found that flagellum length differentiation contributed to the majority of the sexual dimorphism of antennae. Most sensillum types or subtypes, including trichoid sensilla subtype I, campaniform sensilla, and primary rhinaria subtypes I and II, were enlarged in males. In addition, males bore more trichoid sensilla subtype I than sexual females. In particular, secondary rhinaria were present in males only and could not be detected in sexual females. These results revealed the structural basis of male olfactory perception. Our findings provide insight into the mechanism underlying chemical communication between sexual aphids and could thus be useful for pest control.

3.
Int J Biol Macromol ; 152: 957-968, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778700

RESUMO

Insect odorant-binding proteins (OBPs) play key roles in transport odors to receptors and contribute to insect survival. The cooperative interaction of HoblOBP1 and HoblOBP2 in Holotrichia oblita Faldermann (Coleoptera: Melolonthidae) could increase their binding capacity for ligands. In present study, molecular docking results showed that OBP1/OBP2 complex formed a large binding pocket and interacted with the ligands by hydrogen bonds and hydrophobic interactions. Then, nine amino acids for single site mutations, three paired for double sites, and negative control were mutated into alanine successfully by site-directed mutagenesis. Finally, fluorescence binding assays of these mutants showed that breaking one or two pairs of hydrogen bonds between HoblOBP1 and HoblOBP2 or formed with the ligands significantly decrease the binding affinity with the ligands. However, hydrophobic site mutants still showed slight binding affinity to the ligands. Therefore, the three pairs of hydrogen bonds involved in heterodimer formation and the five hydrogen bonding sites in binding pocket played a key role in response to odors in H. oblita. Our findings may promote further understanding of the mechanisms underlying OBP dimer formation and the role of OBP dimers in odor perception and discrimination.


Assuntos
Besouros , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Odorantes , Multimerização Proteica , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores Odorantes/genética
4.
PLoS One ; 12(4): e0174036, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423037

RESUMO

Loxostege sticticalis Linnaeus is an economically important agricultural pest, and the larvae cause great damage to crops, especially in Northern China. However, effective and environmentally friendly chemical methods for controlling this pest have not been discovered to date. In the present study, we performed HiSeq2500 sequencing of transcriptomes of the male and female adult antennae, adult legs and third instar larvae, and we identified 54 candidate odorant receptors (ORs), including 1 odorant receptor coreceptor (Orco) and 5 pheromone receptors (PRs), 18 ionotropic receptors (IRs), 13 gustatory receptors (GRs), 34 odorant binding proteins (OBPs), including 1 general odorant binding protein (GOBP1) and 3 pheromone binding proteins (PBPs), 10 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs). The results of RNA-Seq and RT-qPCR analyses showed the expression levels of most genes in the antennae were higher than that in the legs and larvae. Furthermore, PR4, OR1-4, 7-11, 13-15, 23, 29-32, 34, 41, 43, 47/IR7d.2/GR5b, 45, 7/PBP2-3, GOBP1, OBP3, 8 showed female antennae-biased expression, while PR1/OBP2, 7/IR75d/CSP2 showed male antennae-biased expression. However, IR1, 7d.3, 68a/OBP11, 20-22, 28/CSP9 had larvae enriched expression, and OBP15, 17, 25, 29/CSP5 were mainly expressed in the legs. The results shown above indicated that these genes might play a key role in foraging, seeking mates and host recognition in the L. sticticalis. Our findings will provide the basic knowledge for further studies on the molecular mechanisms of the olfactory system of L. sticticalis and potential novel targets for pest control strategies.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Lepidópteros/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Transcriptoma , Animais , Evolução Biológica , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Proteínas de Insetos/metabolismo , Larva/genética , Lepidópteros/classificação , Masculino , Anotação de Sequência Molecular , Filogenia , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...